33 research outputs found

    Bounds on monotone switching networks for directed connectivity

    Full text link
    We separate monotone analogues of L and NL by proving that any monotone switching network solving directed connectivity on nn vertices must have size at least n(Ω(lg(n)))n^(\Omega(\lg(n))).Comment: 49 pages, 12 figure

    Sum of Squares Lower Bounds from Symmetry and a Good Story

    Get PDF
    In this paper, we develop machinery which makes it much easier to prove sum of squares lower bounds when the problem is symmetric under permutations of [1,n] and the unsatisfiability of our problem comes from integrality arguments, i.e. arguments that an expression must be an integer. Roughly speaking, to prove SOS lower bounds with our machinery it is sufficient to verify that the answer to the following three questions is yes: 1) Are there natural pseudo-expectation values for the problem? 2) Are these pseudo-expectation values rational functions of the problem parameters? 3) Are there sufficiently many values of the parameters for which these pseudo-expectation values correspond to the actual expected values over a distribution of solutions which is the uniform distribution over permutations of a single solution? We demonstrate our machinery on three problems, the knapsack problem analyzed by Grigoriev, the MOD 2 principle (which says that the complete graph K_n has no perfect matching when n is odd), and the following Turan type problem: Minimize the number of triangles in a graph G with a given edge density. For knapsack, we recover Grigoriev\u27s lower bound exactly. For the MOD 2 principle, we tighten Grigoriev\u27s linear degree sum of squares lower bound, making it exact. Finally, for the triangle problem, we prove a sum of squares lower bound for finding the minimum triangle density. This lower bound is completely new and gives a simple example where constant degree sum of squares methods have a constant factor error in estimating graph densities

    A Note on Amortized Branching Program Complexity

    Get PDF
    In this paper, we show that while almost all functions require exponential size branching programs to compute, for all functions f there is a branching program computing a doubly exponential number of copies of f which has linear size per copy of f. This result disproves a conjecture about non-uniform catalytic computation, rules out a certain type of bottleneck argument for proving non-monotone space lower bounds, and can be thought of as a constructive analogue of Razborov\u27s result that submodular complexity measures have maximum value O(n)

    Bounds on the Total Coefficient Size of Nullstellensatz Proofs of the Pigeonhole Principle and the Ordering Principle

    Full text link
    In this paper, we investigate the total coefficient size of Nullstellensatz proofs. We show that Nullstellensatz proofs of the pigeonhole principle on nn pigeons require total coefficient size 2Ω(n)2^{\Omega(n)} and that there exist Nullstellensatz proofs of the ordering principle on nn elements with total coefficient size 2nn2^n - n
    corecore